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Time series studies show that hot temperatures are associatedwith
increased death rates in the short term. In light of evidence of
adaptation to usual temperature but higher deaths at unusual
temperatures, a long-term exposure relevant to mortality might be
summertime temperature variability, which is expected to increase
with climate change. We investigated whether the standard de-
viation (SD) of summer (June–August) temperatures was associated
with survival in four cohorts of persons over age 65 y with predis-
posing diseases in 135 US cities. Using Medicare data (1985–2006),
we constructed cohorts of persons hospitalized with chronic ob-
structive pulmonary disease, diabetes, congestive heart failure,
andmyocardial infarction. City-specific yearly summer temperature
variance was linked to the individuals during follow-up in each city
and was treated as a time-varying exposure. We applied a Cox pro-
portional hazard model for each cohort within each city, adjusting
for individual risk factors, wintertime temperature variance, yearly
ozone levels, and long-term trends, to estimate the chronic effects
onmortality of long-termexposure to summer temperature SD, and
then pooled results across cities. Mortality hazard ratios ranged
from 1.028 (95% confidence interval, 1.013– 1.042) per 1 °C increase
in summer temperature SD for personswith congestive heart failure
to 1.040 (95% confidence interval, 1.022–1.059) per 1 °C increase for
those with diabetes. Associations were higher in elderly persons
and lower in cities with a higher percentage of land with green
surface. Our data suggest that long-term increases in temperature
variability may increase the risk of mortality in different subgroups
of susceptible older populations.
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Records of daily weather conditions and air pollution concen-
trations measured at airports and other local stations, along

with daily registries of health outcomes, such as mortality or
hospitalizations, routinely compiled by health authorities, are
sometimes merged to form multiyear time series datasets. These
time series can be analyzed to yield information on how environ-
mental conditionsmay contribute to increases in deaths and illness
on a short-term time scale (days to weeks after the environmental
exposure). In the last decade, numerous multicity time series
analyses have demonstrated that cold and hot temperatures, as
well as extremes of cold and hot temperature, are associated with
increased death rates in the days after these weather conditions
(1–10). These findings have important implications for under-
standing the health effects of climate change, given that climate
change is increasing both the variability of temperatures and the
frequency, duration, and intensity of heat waves (11–13).
As with the short-term associations between particulate air

pollution and health, these findings, by their nature, are unable to
address the question of the extent to which temperature exposure
may decrease life expectancy. Studies of short-term mortality
displacement demonstrate that some of the excess deaths associ-
ated with heat and heat waves are merely deaths brought forward
by a few weeks (14–16), although heat may reduce life expectancy
in a more substantial way, for example, among children in Delhi,

India (14). In general, however, time series analyses are poorly
designed for asking this question over longer time frames.
In the case of particulate air pollution, the question of whether

exposure shortened lives has been answered affirmatively through
cohort studies, which followed cohorts of individuals in locations
with higher and lower particle concentrations for multiple years.
Controlling for other determinants of reduced life expectancy,
those living in more polluted areas died sooner than those living in
cleaner communities (17–26). However, to date no such studies
have been done for temperature, and addressing the question
of life-shortening is more complicated for weather than for
air pollution.
Unlike air pollution, which has a monotonic, linear dose–re-

sponse relationship (with higher pollution associated with higher
mortality), the associations observed with temperature are often
nonlinear, especially in climates where physiologically stressful
temperatures occur on either side (colder or hotter) of a zone of
relatively comfortable temperatures (5, 9). In places like Delhi,
India, where it does not get very cold, the relationship tends to
be more linear.
Furthermore, there is strong evidence of adaptation to usual

temperatures. Few people would expect to find higher mortality
rates in the Mediterranean region than in Scandinavia, simply
because of the higher mean temperature in the former. Indeed,
time series studies in the United States have reported essentially
no heat-related excess deaths in such cities as Houston, where
summertime temperatures are regularly and persistently high
(16); however, these studies have indicated that the variability of
summertime temperature is a key factor explaining differences
among cities in the effects of very hot days (16, 27).
Existing evidence suggests teperature variability may be an

appropriate long-term indicator of weather conditions that may
result in reduced life expectancy in an epidemiologic cohort. In
addition to an increase in temperature, climate models predict
an increase in summer temperature variability in mid-latitude
Northern Hemisphere land areas, which may be a major public
health concern (13).
The foregoing example raises another issue. Scandinavia differs

from Greece in many other potential risk factors for longevity,
including diet, stress patterns, smoking habits, and others. Al-
though cohort studies studying longer-term environmental expo-
sures and comparing communities in a cross-sectional manner
attempt to control for these factors, residual confounding remains
a concern. Causal modeling philosophy suggests that attempting
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to assign exposure as randomly as possible with respect to these
factors can avoid such residual confounding.
We have adopted this philosophy when designing a cohort study

to examine whether year-to-year variations in summertime tem-
perature variability around its long-term trends within a city are
associated with year-to-year variations in survival of city-specific
cohorts. By restricting the analysis to within a city, we avoid all
confounding by factors that can vary across a city or region. By
looking only at year-to-year variations around the city-specific
trend in exposure, we eliminate potential confounding by trends in
other exposures, such as smoking, and focus onwhether essentially
random meteorological events are related to health. The year-to-
year variability in exposure is more like a random fluctuation and
is unlikely to be correlated with most other predictors of mortality,
although ozone pollution and heat waves likely covary with these
fluctuations. Because elderly persons and persons with chronic
disease appear to be more susceptible to the acute effects of
temperature, we focused on cohorts of these individuals.

Results
The cities used in the study, together with the city-specific distri-
bution of the average and standard deviation (SD) of temperatures
during summer (June–August), heat waves, and ozone are listed in
Table S1. Ozone data were not available or were available for only
a few years in nine cities, which were excluded from the analysis that
included ozone in our models. Fig. 1 presents a map of the United
States with the average SD of summer temperature of the 135 cities
included in this study. The figure shows a higher summer temper-
ature SD in the northern states compared with southern states.
Fig. 2 presents the probability density estimates of the summer

temperature SD across all of the cities; the distribution is slightly
skewed to the left. The summer temperature SD across all cities
varied between 0.5 °C and 5 °C. According to our definition of
a heat wave, the annual mean number of days in a heat wave
across all cities was 4 d (range, 0–36 d). The city-specific average
number of heat waves is given in Table S1.
Table 1 presents characteristics of the study population for all

study cities together for each of the four cohorts. Overall, our
cohorts comprised 3,749,096 persons with chronic obstructive
pulmonary disease (COPD), 1,939,149 with congestive heart fail-
ure (CHF), 3,364,868 with diabetes, and 1,454,928 withmyocardial
infarction (MI). Themedian duration of follow-up is also shown in
Table 1; in all cohorts, survival times ranged from 1 y to 21 y.
Population characteristics varied among the four cohorts, although

all cohorts had a predominance of females. In terms of racial
distribution, blacks composed 17% of the diabetes cohort, but only
8% of the MI cohort. The CHF cohort was older than the others,
with a mean age of 79 y, and the diabetes cohort was younger, with
a mean age of 76 y. Data are expressed as hazard ratio (HR) for
each 1 °C of temperature SD during summer months.
Table 2 presents the increases in the risk of mortality in each

of the four cohorts, associated with temperature SD in summer
for four different models, pooled across all cities. In our pre-
ferred model, which included ozone levels, we found significant
summer HRs for mortality, ranging from 1.028 [95% confidence
interval (CI), 1.013–1.042] per 1 °C increase in summer tem-
perature SD for persons with CHF to 1.040 (95% CI, 1.022–
1.059) per 1 °C increase for persons with diabetes.
These results are similar (∼10% lower) to the results derived

without adjusting for ozone levels presented in Table 2. We also
found significant yearly ozone associations, with an HR of 1.040
(95% CI, 1.013–1.068) per 5-ppb increase in yearly ozone for MI,
1.019 (95% CI, 1.00–1.039) for CHF, 1.025 (95% CI, 1.002–
1.049) for COPD, and 1.034 (95% CI, 1.010–1.060) for diabetes.
Table 2 also presents the results from two additional models,

one adjusting only for heat waves and one adjusting for both heat
waves and ozone. In these models, the effect estimates increased
by ∼20% from the results without adjustment and by ∼30% from
the results adjusting only for ozone.
Table 3 presents the results of the pooled analysis by region, as

defined by the five climate regions. Our analysis included 12
cities in region 1 (the coldest region), 37 cities in region 2, 26
cities in region 3, 23 cities in region 4, and 28 cities in region
5 (the hottest region). In all of the cohorts, the summer tem-
perature SD associations with mortality increased from lowest to
highest as the regions went from coldest to hottest.
Our analysis including interaction terms between the in-

dividual characteristics and summer temperature SD in the
model revealed no difference in associations by sex or by race.
However, we found significantly higher associations in the sub-
jects aged >75 y compared with those aged 65–74 y (Fig. 3).
We analyzed geographic modifiers at the zip code level by

including interaction terms between the modifiers and summer
temperature SD in the model, and found no significant inter-
actions. However, all of the cohorts showed significant main
effects, with decreased survival time with an increasing pro-
portion of the population below the poverty level, an increasing
proportion of blacks, or increasing population density and in-
creased survival time with increasing proportion of the pop-
ulation over 25 y of age who completed college and increasing
proportion of green surface (Table S2). For example, for each

Fig. 1. Map of the 135 US cities included in the study and US Energy In-
formation Administration climate zones. The size of the circle represents the
SD of summer temperature in that city. CDD, cooling degree-days; HDD,
heating degree-days.
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15% increase in green surface within a zip code, the HR for the
MI cohort was 0.98 (95% CI, 0.97–1.00) and the HR for the
COPD cohort was 0.98 (95% CI, 0.97–0.99); for each 9% in-
crease in the proportion of college-educated adults in a zip code,
the HR for the MI cohort was 0.97 (95% CI, 0.95–0.98); and for
each 4% increase in the proportion of the population below the
poverty level, the HR for the MI cohort was 1.03 (95% CI, 1.02–
1.04). These and other results are presented in Table S2.
In the second stage of our analysis, we examined the city-

specific characteristics as potential geographic-level modifiers of
the temperature SD–mortality association at the city level in
a meta-regression. We found a significant effect of the pro-
portion of green surface in all of the cohorts, with lower asso-
ciations in cities with a higher percentage of land in green
surface. We also found significant modification by the proportion

of nonwhite residents, with a stronger association in cities with
higher percentage of nonwhite residents (Table 4). Applying
a multiple meta-regression with those city-specific characteristics
that were not highly correlated revealed significant modifications
of the temperature SD–mortality association by the proportion
of green surface and the proportion of nonwhite residents in
a city in all four cohorts.

Table 1. Characteristics of the CHF, MI, diabetes, and COPD cohorts in 135 US cities

CHF MI Diabetes COPD

Total cohort, % 100 100 100 100
Deaths, % 60.9 41.9 43.0 49.8
Sex, %

Male 41.2 50.9 41.6 46.4
Female 58.8 49.1 58.4 53.6

Race, %
White 82.1 87.3 75.5 86.4
Black 13.1 7.9 17.1 9.1
Other 4.8 4.8 7.3 4.5

Age, years, mean (95% CI) 79.4 (66.9– 92.8) 76.9 (66.8–90.2) 76.2 (66.1–89.2) 77.3 (66.6–90.5)
Days in coronary care, mean (95% CI) 0.7 (0–4.2) 1.4 (0–6.6) 0.4 (0–2.6) 0.5 (0–2.9)
Days in intensive care, mean (95% CI) 0.87 (0–4.8) 1.5 (0–6.7) 0.6 (0–3.5) 0.8 (0–4.7)
Median follow-up, years 3.6 5.1 4.2 4.2
Secondary or previous diagnoses, %

COPD 27.1 15.5 12.0
CHF 35.2 16.1 21.6
Diabetes 27.2 21.7 13.4
Hypertension 38.5 36.3 41.4 28.7

Previous admissions, %
Atrial fibrillation 15.0 5.5 4.3 6.0
MI 10.3 2.4 3.1

Table 2. HR and 95% CI for a 1 °C increase in yearly summer
temperature SD across 135 US cities in each of the four cohorts
studied, 1985–2006

HR 95% CI

COPD 1.048 1.029–1.067
Diabetes 1.055 1.035–1.076
MI 1.050 1.030–1.069
CHF 1.038 1.024–1.052
Adjusting for ozone

COPD 1.037 1.019–1.055
Diabetes 1.040 1.022–1.059
MI 1.038 1.021–1.055
CHF 1.028 1.013–1.042

Adjusting for heat waves
COPD 1.069 1.052–1.087
Diabetes 1.076 1.058–1.095
MI 1.073 1.055–1.091
CHF 1.061 1.047–1.076

Adjusting for ozone and heat waves
COPD 1.064 1.044–1.083
Diabetes 1.052 1.036–1.069
MI 1.071 1.051–1.092
CHF 1.065 1.047–1.083

Table 3. HR and 95% CI for a 1 °C increase in yearly summer
temperature SD across 135 US cities in each of the four cohorts
combined by climate region

Summer (June–August)

HR 95% CI

CHF
1 (coldest) 0.997 0.957–1.039
2 1.013 0.994–1.031
3 1.020 0.995–1.046
4 1.042 1.018–1.067
5 (hottest) 1.057 1.005–1.112

MI
1 (coldest) 0.984 0.952–1.018
2 1.020 0.9997–1.045
3 1.030 1.001–1.060
4 1.051 1.018–1.085
5 (hottest) 1.095 1.039–1.154

Diabetes
1 (coldest) 0.998 0.949–1.049
2 1.020 0.994–1.045
3 1.022 0.991–1.054
4 1.052 1.024–1.080
5 (hottest) 1.098 1.036–1.163

COPD
1 (coldest) 1.015 0.962–1.071
2 1.019 0.995–1.044
3 1.021 0.994–1.048
4 1.047 1.015–1.080
5 (hottest) 1.078 1.017–1.142

See Fig. 1 and text for a description of the climate regions.
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Finally, to test whether the association of summer temperature
SD with survival was linear, we fit a piecewise linear model es-
timating the effect of summer temperature SD for levels below
and above the median temperature SD (2.9 °C) across all of the
cities. We found a slightly different association for summer
temperature SDs at the higher end of the range compared with
those at the lower end of the range; for example, in the COPD
cohort, we found an HR of 1.050 (95% CI, 1.025–1.076) for a
1 °C increase in summer temperature SD for the linear piece less
than the median SD (2.9 °C) and an HR of 1.040 (95% CI,
1.022–1.059) for the linear piece greater than the median SD.
None of the differences were statistically significant, however.
Moreover, a sensitivity analysis for violation of proportionality by
including interactions between time and the covariates in the
model produced similar estimates for temperature SD.

Discussion
Higher temperature SD in the warm season was significantly as-
sociated with shorter survival time in a large multicity study of
older subjects discharged alive following an admission for MI,
COPD, CHF, or diabetes. Associations were stronger in the sub-
jects age ≥75 y. For all of the cohorts, the temperature SD had
a weaker association with survival time in the cities with a higher

proportion of green surface and a stronger association in cities
with a higher proportion of nonwhite residents. The associations
varied by geographical regions, with the stronger associations with
summertime temperature variability in the warmer regions.
Our results are not confounded by ozone level; adjusting for

yearly averages of ozone reduced the effect estimates by ∼10%.
Our recent study (23) applying the same survival analysis approach
found that long-term ozone exposure alone is associated with in-
creased risk of death in Medicare subjects with the same specific
chronic conditions as in the present study. Our current results
support this association with ozone. In addition, our effect sizes
increased with control for number of heat waves in each summer,
indicating that our results are not driven by heat waves.
A major advance in the present study is the ability to examine

effect modification by covariates measured at the zip code level
rather than at the more commonly studied city level. Notwith-
standing, we found no difference in the association of tempera-
ture variability with survival by percentage of the population
living in poverty, percentage with a college degree, percentage of
nonwhite residents, or proportion of green space at the zip code
level. In addition, at the individual level, associations did not
differ by race. This is in contrast to the results of time series
studies of the acute effects of heat, which have reported stronger
associations in blacks and persons with less than a college degree
(28, 29). Also in contrast to results from time series studies, air-
conditioning prevalence at the city level did not modify the as-
sociation between temperature exposure and mortality (1). A
limitation of the present study was our inability to control for
particles with an aerodynamic diameter of 2.5 μm or less (PM2.5),
because it was not available in these cities until 1999.
To the best of our knowledge, this is the first study to examine

the longer-term effects of temperature variability on survival in
susceptible older people. Evidence from the physiology literature
suggests that older people and those with chronic health con-
ditions have a harder time thermoregulating and acclimating to
heat (30), suggesting that they also may be less resilient to sig-
nificant swings in temperature. Moreover, controlling for the
number of heat waves in each summer season does not diminish
the estimated effect of temperature variability, indicating that we
are not simply looking at the long-term effects of heat waves and
that temperature variability that does not reach the threshold for
a heat wave still affects life expectancy. This suggests that ad-
aptation and intervention strategies solely targeted to heat waves
may miss an important opportunity to improve public health.
Taken together, our present findings and previous evidence
suggest that summer temperature variability could plausibly im-
pair the health and shorten the life expectancy of older adults,
particularly those with chronic medical conditions.
Given our city-specific analysis, the associations revealed by our

analysis are not related to differences between cities in exposure.
Rather, they reflect the overall impact of year-to-year changes in
mortality risk with year-to-year changes in exposure. Moreover,
our study design avoids confounding by cross-sectional factors that
vary by city. In addition, a sensitivity analysis for lack of pro-
portionality in the covariates controlled demonstrated no impact
on the estimated effects of temperature variability.
A 1 °C increase in temperature SD is a plausible increase in some

regions (31). Based on our findings, this increase in temperature SD
would increase all-cause mortality in our MI cohort by 5%, for
example. Based on an average of 270,000 deaths per year across all
four cohorts, a 5% increase in mortality would correspond to
∼14,000 additional deaths per year due to an increase in tempera-
ture variability in the United States. Our findings suggest that long-
term increases in temperature SDmay increase the risk ofmortality
in different subgroups of susceptible older populations, although
further investigation of appropriate adaptationmeasures is needed.
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Table 4. Modification of the variance of summer temperature
association by proportion of green surface and proportion of
nonwhite residents across 135 US cities

P value for
modifier

HR at the 25th
percentile

HR at the 75th
percentile

Cohort 25% HR 95% CI 75% HR 95% CI

Proportion green space modifier
CHF 0.01 0.8 1.04 1.02–1.05 0.9 1.01 0.99–1.03
COPD 0.02 1.04 1.03–1.06 1.02 1.00–1.04
Diabetes 0.03 1.05 1.03–1.07 1.02 1.00–1.05
MI 0.03 1.05 1.03–1.06 1.02 1.00–1.04

Proportion nonwhite modifier
CHF 0.00 0.16 1.01 0.99–1.03 0.33 1.04 1.03–1.06
COPD 0.00 1.02 0.99–1.04 1.05 1.03–1.07
Diabetes 0.00 1.02 1.00–1.04 1.06 1.04–1.08
MI 0.01 1.02 1.00–1.04 1.05 1.03–1.07

Results are expressed as HR and 95% CI for a 1 °C increase in the SD of
summer temperature estimated at the 25th percentile and the 75th percen-
tile of the effect modifier.
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Materials and Methods
Study Population. The US Medicare program covers hospitalization for all
residents aged 65 and older. Using data for the years 1985–2006, we con-
structed four cohorts of persons with potentially predisposing conditions.
Thesewere defined as persons discharged alive after emergency admission for
four specific conditions that we hypothesized might put subjects at greater
risk, defining cases as primary discharge diagnoses of COPD [International
Classification of Disease ninth revision (ICD-9) codes 490–496, except 493],
diabetes (ICD-9 code 250), CHF (ICD-9 code 428), and MI (ICD-9 code 410).

For each subject in these four cohorts, we recorded the date of death or
whether still living at the end of 2006, as well as information on age, sex, race,
number of coronary and medical intensive care days, and medical conditions
that might affect the risk of survival. Age was updated each year for the next
year’s follow-up period. We defined medical conditions as previous admis-
sions with a diagnosis of atrial fibrillation (ICD-9 code 427.3) or MI, and
secondary (on the index admission) or previous diagnosis of COPD, diabetes,
CHF, and essential hypertension (ICD-9 code 401) for cohorts in which that
was not the primary definition (e.g., COPD in the MI cohort).

Subjects alive on January 1 of the year following the index admission were
entered into the cohort, and follow-up periods were calendar years. We ex-
cluded subjectswhose death or subsequent admission occurredwithin thefirst
3 mo of their index admission, as well as those who were admitted in 2006.

Environmental Data. We choose 135 US cities that represented diverse geo-
graphic and climatic features, with good representation frommost regions of
the United States. Cities were defined according to the county or counties
within a corresponding metropolitan statistical area (http://www.census.gov/
population/www/metroareas/metrodef.html). These 201 counties were se-
lected based on the size of themetropolitan statistical area and the number of
admissions for cardiovascular disease in 2004–2006. We obtained daily mean
temperature data from theNational Oceanic andAtmospheric Administration
(http://www.ncdc.noaa.gov/oa/ncdc.html); a single weather station was se-
lected for each city based on the proximity of the station to the city’s pop-
ulation center and the availability of data for 1985–2006.We then created, for
each year, a variable for the SD of mean daily summertime (June–August)
temperature in each city. We also created a variable representing heat waves,
defined as the count of days in each year when the 2-d average temperature
exceeded the 99th percentile of daily mean temperature for 1985–2006.

We obtained ozone (daily 8-h mean) data from the US Environmental
Protection Agency’s Air Quality System Technology Transfer Network. Daily
8-h mean ozone data were available for 126 of the 135 cities that we ex-
amined. For each follow-up period, we created yearly averages of the 8-h
mean daily ozone concentrations.

We examined whether the risk differed by prevailing climate by dividing
the US into five climate regions based on the US Department of Energy,
Energy Information Administration’s Commercial Buildings Energy Con-
sumption Survey climate zones (available at http://www.eia.doe.gov/emeu/
cbecs/climate_zones.html). These five climate zones are based on the 30-y
average of cooling degree-days (i.e., the sum of daily mean temperatures
above 18.3 °C) and heating degree-days (i.e., the sum of daily mean tem-
peratures below 18.3 °C) for the period 1971–2000.

Other Geographic Data. We considered several factors as potential geo-
graphical-level modifiers of the response to temperature SD. Using the 2000
US Census Planners Package Plus data product (GeoLytics), we obtained data
on population density, proportion of the population below the poverty level,
proportion of the population over 25 y of age (25+) who completed college,
proportion of the population 25+ who did not complete high school, pro-
portion of Hispanic population, and proportion of black population. From the
2001 National Land Use Cover dataset, we calculated the proportion of land
with green surface and proportion of land with a water body. Finally, we
calculated the percentage of households in each city with central air-condi-
tioning based on the Census Bureau’s American Housing Survey. More details
on these geographic data are available elsewhere (32). The census and land
use data were merged with individuals based on their postal code of

residence, whereas air-conditioning data were available only for the county
or metropolitan area. Because these variables vary substantially between
cities as well as within a city, city average values were computed and used as
effect modifiers in the second-stage analysis defined below.

Statistical Methods. To avoid cross-sectional confounding, we fit separate
survival analyses in each city. The exposures were summertime temperature
SDs in each year, adjusting for wintertime (December–February) temperature
SDs, both of which were entered into the regression models simultaneously
and treated as time-varying covariates. To do this, we used the counting
process extension of the proportional hazards model pioneered by Andersen
and Gill (33). In this formulation, one observation is created for each person
for each year of mortality follow-up. We analyzed the data using Proc PHREG
in SAS version 9.1.1 (SAS Institute). To control for tied observations, we used
the appropriate likelihood function as given by Kalbfleisch and Prentice (34).

City-specific cohorts were created for each of the four health conditions
that we identified, using the aforementioned inclusion criteria. Separate
survival analyses, with failure defined as death, were conducted for each city
and each cohort. For each subject, follow-up was each 1-y period (January–
December) until the year of death or until December 2006 (censoring). This
method has been described previously (23, 25).

The focus of our analysis was onwhether year-to-year variations in summer
temperature SD within each city were associated with year-to-year variations
in survival. To avoid confounding by long-term time trends, we entered
a linear term for year of follow-up. Thus, we examined whether year-to-year
variations in survival around its long-term trend were associated with year-to-
year variations in summer temperature SD around its long-term trend. Our
model also included indicator variables for season of index admission, defined
as cold (December–February), hot (June–August), or transitional. Another
possible confounder is ozone, a secondary pollutant whose levels increase
during warmer months; thus, we included the yearly (January–December)
averages of the daily 8-h mean ozone concentrations in the models.

We controlled for individual risk factors, including age, sex, race, number of
days of coronary and medical intensive care, previous diagnoses for atrial fi-
brillationandMI,andsecondaryorpreviousdiagnosesforCOPD,diabetes,CHF,
and hypertension. To allow for possible nonproportionality of the survival
rates, age (by 5-y categories), sex, and race (white, black, and other) were
treated as stratification variables.We further tested for nonproportionality by
adding interaction terms between the other covariates and time to the model
to examine the effects on our temperature SD associations.

To examine whether the summertime temperature SD is merely repre-
sentative of the presence of heat waves in that year, we reran our models
including a variable for counts of heat waves in each year. We also examined
age (defined as ≤74 y and >74 y), sex, and race (white, black, and other) as
modifiers of the temperature effects by including interaction terms between
the individual characteristic and summer temperature SD in the model.
Similarly, we examined interactions by the zip code level covariates defined
above. To test the linearity of summer temperature SD, we fit a piecewise
linear model with a separate slope above and below the median summer
temperature SD across all of the cities.

In the second stage of the analysis, we combined the results of these city-
specific analyses (for each chronic condition) in a random-effects meta-
analysis (35). To examine city-specific characteristics as potential geographic-
level modifiers, we regressed the city-specific coefficients obtained in the
first stage of the analysis for each cohort against each city-level modifier in
a meta-regression and expressed the results as HR for a 1 °C increase in the
summer temperature SD at the 25th percentile and the 75th percentile of the
potential effect modifier. The results are expressed as HR for 1 °C increments
of summertime temperature SD during 1985–2006 over all 135 communities.
This HR can be interpreted as the relative risk of dying earlier for people
living in a community with a 1 °C higher summertime temperature SD.
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